Elektromagnet – Federkraft Zahnkupplung Typ 548

Lenze SELECTION

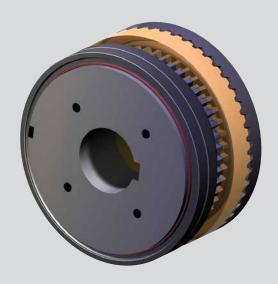
Elektromagnet - Federkraft Zahnkupplung Typ 548 SELECTIO

Eigenschaften

- hohe Drehmomente bei kleinstem Bauraum
- schlupffreie, formschlüssige Drehmomentübertragung
- schaltbar im Stillstand oder bei geringen Relativdrehzahlen
- Einsatz auch bei extremen Temperaturen
- einfache Ansteuerung mittels Gleichstrom
- antimagnetische Kupplungsverzahnung für optimalen Magnetfluss
- Stromversorgung über zwei Schleifringe
- für Öl- sowie Trockenlauf geeignet
- vielfältige einsatzfallbezogene Verzahnungsgeometrien
- schnelle Schaltzeiten
- Festpunktverzahnung für winkelgenaues Einschalten
- kompromisslose Sicherheit und Zuverlässigkeit
- integrierte, montagefreundliche Systemlösungen
- Zustandsüberwachung möglich

Mönninghoff Antriebstechnik kommt in ihrer umfangreichen Variantenvielfalt allen Einsatzfällen des modernen Maschinen- und Anlagenbaus entgegen, auch unter extremen Bedingungen.

Der Anforderung nach maximaler Genauigkeit in Verpackungsmaschinen, Robotik oder in der Medizintechnik stellen wir uns ebenso, wie den ausgeprägten Sicherheitsstandards in Skiliften oder der Luft- und Raumfahrt.


Unsere innovative Technologie richtet sich an Kunden, die höchste Ansprüche an ihre eigenen Produkte stellen. Ihnen bieten wir individuell entwickelte Lösungen.

Elektromagnet - Federkraft Zahnkupplung Typ 548

Typenschlüssel

Mönninghoff Federkraft Zahnkupplungen werden nach dem folgenden Schlüssel gekennzeichnet:

548.A.2.1

A Kupplungsgröße

Weitere Individualisierungsmerkmale:

- Zahnform
- Spannung
- Bohrungsdurchmesser mit Passfedernut

Anhand dieser Merkmale entwickeln wir individuelle Kupplungen hinsichtlich Drehmoment, Schaltverhalten oder Drehzahl.


Gerne helfen unsere Ingenieure bei der Auslegung von kundenspezifischen Kupplungen. Dabei ist es das Ziel unserer Entwicklungsarbeit, den technologischen Fortschritt unserer Kunden innovativ zu begleiten.

Bestellbeispiel

Mönninghoff Federkraft - Zahnkupplung Typ 548.14.2.1

Zahnform Normal Spannung 24 Vdc

Bohrung d 20 H7, Nut n. DIN 6885/1

Lenze SELECTION

Elektromagnet - Federkraft Zahnkupplung Typ 548 SELECTIO

Bestimmung der Kupplungsgröße

Für Auslegungen der Mönninghoff Elektromagnet - Federkraft Zahnkupplungen sind folgende technische Voraussetzungen zu berücksichtigen:

- bei der Größenbestimmung der Zahnkupplung muss nicht nur die Spitzenbelastung, sondern auch das dynamische Verhalten der gesamten Anlage bedacht werden
- da Zahnkupplungen im Gegensatz zu kraftschlüssigen Kupplungen zu keinem Zeitpunkt überlastet werden dürfen, sind entsprechende Sicherheitsfaktoren zu berücksichtigen
- grundsätzlich erfolgt die Größenbestimmung einer Zahnkupplung anhand des Drehmoments:

$$M = 9550 \frac{P}{n} \cdot K [Nm]$$

$$M = (M_L + M_B) \cdot K [Nm]$$

• das übertragbare Drehmoment der Zahnkupplungen muss daher immer größer sein als das größte mögliche Drehmoment des Antriebs im System:

Forderung
$$M_{\ddot{i}} > M$$

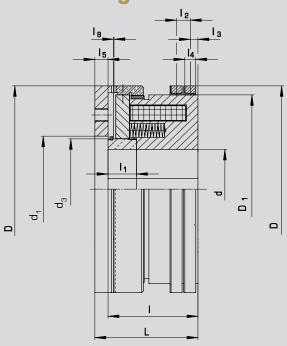
P = Leistung des Motors [kW]

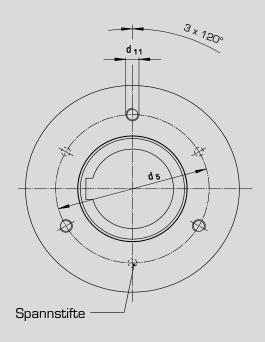
n = Drehzahl des Motors [min⁻¹]

K = Sicherheitsfaktor 1,5 ... 2,5

M = erforderliches Moment

M_L = Lastmoment


M_B = Beschleunigungsmoment


M_{['j} = Nennmoment der Kupplung (siehe nachstehende Tabelle)

Elektromagnet - Federkraft Zahnkupplung Typ 548 SELECTION

Abmessungen

Federkraft Zahnkupplung mit zwei Schleifringen

Technische Daten

Größe				80	14	17	22	23	31	32
Drehmoment			[Nm]	10	40	80	180	350	1000	2200
max. Drehzahl [min ⁻¹]				4500	3600	3000	2500	2100	1800	1400
Spulenleistung			[W]	18,6	38,8	58	81,5	100,6	162,1	195,1
Federkraft			[N]	90	200	450	650	850	2300	5700
Zähnezahl	Normal			260	388	392	356	195	301	220
	Säge			30	36	38	40	40	-	-
Bohrung d ^{H7}	Nut n. DIN 6885/1	nin.	[mm]	10	15	15	20	25	47	65
	r	nax.		15	32	40	45	60	75	85
	Nut n. DIN 6885/2 r	nax.		-	35	-	-	-	-	-
Abmessungen		D	[mm]	67	95	114	134	166	195	240
		D_1		70	85,5	100	120	150	178	218
		d₁H7	7	32	52	62	70	90	100	120
		d_3		24	45	55	60	80	95	101,7
		d_5		46	70	80	95	120	140	150
		<u>d</u> ₁₁	vvv	M5	M8	M12	M12	M12	M12	M12
		L		38	51	60	65	78	94	117
		l _{0,1}		34	46	54	60	68	82	101
d		I ₁		13	20	20	25	24,5	26	31
				10	10	9	12	12,5	12,5	14,5
- Ø5,5 ↑		l ₃		5	6,5	6,5	8	7	7	8
+ 30		I_4		6	8	8	10	10	10	10
		l ₅		5	6,5	8	8	10	12	16
	`	l _{8-0,1}		0,2	0,2	0,2	0,3	0,3	0,4	0,4

Elektromagnet - Federkraft Zahnkupplung Typ 548

Zahnformen

Jede Mönninghoff Federkraft Zahnkupplung kann anwendungsbezogen mit einer Vielzahl von Verzahnungsgeometrien und Einrastpositionen ausgeführt werden.

Wir beraten gerne bei der optimalen Auslegung je nach Einsatzfall.

Verzahnungsbeispiele

Normal

- Übertragung des Drehmoments in beiden Drehrichtungen mit geringem Umfangsspiel
- Spielfreiheit als Sonderlösung möglich
- durch vergrößerten Flankenwinkel auch als Überlastverzahnung mit Festpunktschaltung lieferbar

Säge - Rechts/Links

- Übertragung des Nennmoments im Uhrzeigersinn oder gegen den Uhrzeigersinn
- in Gegenrichtung etwa 10% des Nennmoments
- bei größeren Differenzdrehzahlen einschaltbar

Elektromagnet - Federkraft Zahnkupplung Typ 548

Spannung

- Nennspannung 24 Volt Gleichstrom
- auf Wunsch Sonderspannungen von 6 196 Volt
- ruhestrombetätigt
- zulässige Spannungstoleranz nach VDE 0580: -10% bis +5%
- um hohe Induktions-Spannungsspitzen zu verhindern, empfiehlt sich bei großer
 Schalthäufigkeit der Einsatz von spannungsabhängigen Widerständen (Varistoren)

Auf einen Blick <u>formschlüssige</u> spezielle Bronzelegierung Drehmomentübertragung breites Spektrum an **Bohrungsdurchmessern** kurze Schaltzeiten optimierte Magnetflussführung spielarm

